
ABSTRACT

WESSELL, CHARLES DAVID. Stochastic Data Clustering. (Under the direction of Carl
D. Meyer.)

Data clustering, the search for hidden structure in data sets, is a field with many

different methodologies, all of which work well in some situations and poorly in others.

Because of this, there is growing interest in finding a consensus clustering solution that

combines the results from a large number of clusterings of a particular data set. These

large number of solutions can be stored in a square matrix that is often nearly uncoupled,

and through clever use of theory regarding dynamical systems first published in 1961 by

Herbert Simon and Albert Ando, a clustering method can be developed.

This thesis will explain the rationale behind this new clustering method and then make

sure it has a solid mathematical foundation. One of the key steps in this new method is

converting a nearly uncoupled matrix to doubly stochastic form. Among the contributions

of this thesis is a measure of near uncoupledness that can be applied to matrices both before

and after that conversion and rigorous proofs that the conversion to doubly stochastic

form does not destroy the symmetry, irreducibility, or near uncoupledness of the original

matrix.

Additionally, the connection between the second eigenvalue of an irreducible, symmetric,

doubly stochastic matrix and the nearly uncoupled structure of that matrix will be

rigorously proven, with the result being that examination of the second eigenvalue will

play an essential role in the new clustering algorithm.

Actual clustering results will be presented to show that the intuitive notions and

mathematical theory that constructed this method do indeed produce high quality

clustering results.
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CHAPTER 1

Overview

1.1 Cluster Analysis

Cluster analysis, or data clustering, is the search for hidden structure in data sets. Such a

search is not difficult if the data set contains a small number of elements each of which is of

low dimension. For example, consider the graph in Figure 1.1. These 75 two-dimensional

points are collectively known as the Ruspini data set and are often used to illustrate data

clustering techniques [69]. Most people have no difficulty grouping the points into four

clusters.

The search for patterns becomes much more difficult if there are hundreds, thousands,

or even millions of data points. It is also more difficult if the dimensionality of the data is

greater than three, since now the human eye cannot be used to cluster. It then becomes

necessary to create algorithms to examine and cluster the data. In cluster analysis of
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(b) A natural clustering of this data set.

Figure 1.1: The Ruspini data set can be easily separated into four clusters by the human
eye.

real-world data there is rarely going to be a “right” answer. Instead the goal of those

who create and use clustering algorithms is to gain some new insight into a data set.

A marketing executive who discovers some well-hidden similarity between the online

shopping habits of young, urban professionals and small-town housewives may hold the

key to increasing his company’s profits. A national security employee who finds some

obscure connection between the vocabulary used during the phone calls of a domestic

organized crime group and the emails amongst members of a European terrorist cell may

thwart a potential disaster, while a campaign manager with knowledge of the clustering

of precincts in a candidate’s district may hold the key to winning an election. In each of

these cases having just some knowledge of a data set’s structure may be enough to make

a difference.

The first use of the term cluster analysis is in a 1939 monograph by the psychologist

Robert Tryon [86]. It was not until 1954 that the term appeared in the title of a referreed

journal article, this time used by an anthropologist [15]. Over the last 70 years many

2



algorithms have been developed to cluster data sets and during that time a number

of books (for example [3, 37, 79, 43, 22, 77]) and academic review articles (including

[21, 44, 45, 7, 42]) have been written surveying the field. A 2007 monograph on clustering

methods lists 58 different algorithms in its appendix [29].

Having access to a large number of data clustering algorithms is not necessarily a good

thing for a researcher since it may be unclear which algorithm will work best with any

particular data set. The fact that many algorithms provide one or more input parameters

that can be set to a variety of values only adds to the confusion. And finally, there

are clustering algorithms such as k-means, nonnegative matrix factorization (NMF),

and mixture models that use random initializations, which can lead to different final

results even on relatively simple data sets.1 Figure 1.2 shows three less-than-spectacular

clusterings of the Ruspini data set.

Knowing there are many clustering algorithms to choose from and that at least some

of them do not give consistent results, may lead one to wonder if there is a single method

better than all the rest. In the preface to his Introduction to Clustering Large and High-

Dimensional Data, Jacob Kogan comments on this possibility by adopting the following

“theorem” from control theorist George Leitmann (the emphasis on the words “best” and

“superior” is Leitmann’s):

Theorem. There does not exist a best method, that is, one which is superior

to all other methods, for solving all problems in a given class of problems.

[50, 57]

Proof. By contradiction.

1NMF and k-means will be used almost exclusively in this thesis. Two good references by the
developers of NMF are [54] which features applications, and [55] which focuses on implementation and
convergence proofs. Since k-means is so popular, there are many elementary explanations of it in print
and on the web. For a more mathematically rigorous explanation, try Chapters 2 and 4 of [50]. A
treatment that also considers the programming aspect of k-means can be found in Chapter 9 of [29].

3
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Figure 1.2: Examples of bad clustering for the Ruspini data set. In graph (1.2a) k-means
splits one of the natural groups while clustering two separate groups together. In graph
(1.2b) a model looking for multiple Gaussian distributions forms one compact cluster at
the expense of creating another elliptical one with high eccentricity, while choosing the
complete link parameter for MATLAB’s hierarchical clustering command leads to the
misclustering in graph (1.2c).

So rather than continue on some quixotic quest for the perfect clustering method, it

may be more productive to see if these varied solutions can be combined in some way to

arrive at a single, robust clustering of the original data set. This idea is the topic of the

next section.

1.2 Consensus Clustering

The term for combining multiple clustering results into a single clustering will be called

consensus clustering throughout this thesis, but that phrase is not the only one used

to describe such an endeavor. Since a collection of clustering methods can be referred

to as an ensemble, this process is sometimes called ensemble clustering [38] while other

authors use the term cluster aggregation [30]. The rest of this section will introduce the

vocabulary and notation associated with consensus clustering along with an overview of

the approaches others have brought to this problem.

4



The starting point for any clustering method is an m-dimensional data set of n elements.

The data set can thus be stored as an m× n matrix A where each column represents an

element of the data set and each row contains the value of a particular attribute for each

of the elements. If the assignment of clusters from a single run of a clustering algorithm

is denoted by Ci, then the input to any consensus method is C = {C1, C2, . . . , Cr}.

One approach for solving this problem is attempting to find a clustering C∗ that is as

close as possible to all the Ci’s. This is an optimization problem known as median partition,

and is known to be NP-complete. A number of heuristics for the median partition problem

exist. Discussion of these heuristics with comparisons and results on real world data sets

can be found in [24, 25, 31].

Other researchers have brought statistical techniques to bear on this problem, using

bootstrapping or other more general resampling techniques to cluster subsets of the

original data set, and then examining the results using some measure of consistency to

settle on the final clustering [27, 65].

Additional approaches include a consensus framework built on a mixture of Gaussians

model [34] and using algorithms originally intended for rank aggregation problems [2].

Other approaches to this problem begin by storing the information from each Ci in an

n× n adjacency matrix A(i) whose elements are defined by

a
(i)
jk =

 1 : when Ci places elements j and k in the same cluster

0 : when Ci does not place elements j and k in the same cluster.

Definition 1.1. If {A(1),A(2),A(3), . . . ,A(r)} is a collection of adjacency matrices created

from clusterings of the same data set, then the sum of these matrices

S = A(1) + A(2) + A(3) + · · ·+ A(r) (1.1)

5



is called the consensus similarity matrix or the consensus matrix. Throughout this thesis

the symbol S will be reserved for this type of matrix.

It should be noted, that some cluster researchers prefer to define S as the sum of

the adjacency matrices multiplied by 1
r
, so that the resulting matrix entry sij equals the

fraction of the time elements i and j cluster together and sij ∈ [0, 1]. In this thesis we

will always use the Definition 1.1.

Once the consensus similarity matrix is created, one can then cluster the original data

by clustering the columns of S using a method of the researcher’s choosing. This method

has been shown to create meaningful clusters using a variety of methods both to create

the original clusterings and to cluster the columns of the consensus similarity matrix

[26, 67], though typically elements of S below a certain threshold are replaced by zero.

The collection of these r adjacency matrices can be used to define a hypergraph which

can then be partitioned (i.e. clustered) using known hypergraph partitioning algorithms

[83, 82] (see Figure 1.4).

A new methodology developed to cluster different conformations of a single drug

molecule comes the closest to the approach developed in this thesis. For this application, a

Markov chain transition matrix can be created where the ij-th entry gives the probability

the molecule changes from conformation i to conformation j. The goal is to then find sets

of conformations such that if the molecule is currently in a particular set, it will remain

in that set for a relatively long time. Approaches to this clustering problem have included

examination of the first few eigenvectors of the transition matrix ([18] and then improved

in [19]), clustering the data based on the second singular vector [28, 85], and spectral

analysis of a family of Hermitian matrices that is a function of the transition matrix [41].

6



C1 = C4 = C5 = {D,U}; {E,N,W}

A1 = A4 = A5 =



D E N U W

D 1 0 0 1 0
E 0 1 1 0 1
N 0 1 1 0 1
U 1 0 0 1 0
W 0 1 1 0 1


(a) The clusterings C1, C4, and C5 are identical. A given clustering
occurring multiple times is common in consensus clustering. For this
example, this adjacency matrix will be used three times in constructing
the consensus matrix.

C2 = {D,W}; {E,N,U}

A2 =



D E N U W

D 1 0 0 0 1
E 0 1 1 1 0
N 0 1 1 1 0
U 0 1 1 1 0
W 1 0 0 0 1


(b) The adjacency matrix for C2

C3 = {D,U,W}; {E,N}

A3 =



D E N U W

D 1 0 0 1 1
E 0 1 1 0 0
N 0 1 1 0 0
U 1 0 0 1 1
W 1 0 0 1 1


(c) The adjacency matrix for C3

S =



D E N U W

D 5 0 0 4 2
E 0 5 5 1 3
N 0 5 5 1 3
U 4 1 1 5 1
W 2 3 3 1 5


(d) S = A1 + A2 + A3 + A4 + A5

Figure 1.3: In this small example, the set {D,E,N, U,W} has been clustered five times.
The first, fourth, and fifth clusterings are identical. The consensus matrix S is the sum of
all five adjacency matrices.

7



U
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D

W

Figure 1.4: A hypergraph of the set and clusterings from Figure 1.3. In a hypergraph, an
edge surrounds all the vertices it connects, so in a clustering context elements in the same
cluster would be enclosed by the same edge. In our example the identical clusterings of
C1, C4, and C5 are represented by the blue, red and green rectangles, respectively. The
purple ellipse and boomerang shape represent C2, and the two orange ellipses represent C4.
To cluster using this approach, one wishes to cut the smallest number of edges that will
leave k distinct groups. For example, if both orange and both purple edges are cut, the
k = 2 clustering {D,U}, {E,N,W} remains. Those four cuts are the smallest number
that can be made to arrive at two clusters.

1.3 A New Approach

If the rows and columns of S are interchanged in such a way that elements in the same

cluster are adjacent to one another, the structure of S is often that of a nearly block

diagonal matrix. In the next chapter we will develop the ideas behind Simon-Ando theory

and see that the theory is designed to take advantage of this structure and hence is a

candidate to be applied to the consensus clustering problem. During that development

it will become apparent that the clustering algorithm will be greatly simplified if S can

be converted to doubly stochastic form, so in Chapter 3 we will review the algorithm

we will use to convert the similarity matrix to doubly stochastic form and show that

such a conversion does not destroy characteristics like symmetry or near uncoupledness.

Chapter 4 will address additional theoretical concerns before Chapter 5 formally defines

8



the stochastic clustering algorithm and demonstrates it with a small example. We examine

some algorithm implementation issues in Chapter 6, present some results in Chapter 7,

and share some final thoughts in Chapter 8.

1.4 Notation

Throughout this thesis, bold-face capital letters denote matrices. The symbol mij denotes

the value at row i, column j of M. If M has a block structure, then Mij represents the

sub-matrix located in the ith row and jth column of blocks. Bold-face small letters denote

column vectors. Below is a list of certain letters reserved for a specific role.

• A general data set with n elements each described by m numerical attributes stored

in matrix form: Am×n

• Measures of similarity between the n elements of a data set will be stored in an

n× n symmetric matrix S, called the consensus matrix (see Definition 1.1).

• P is a doubly stochastic matrix.

• D denotes a square, diagonal matrix. When multiple diagonal matrices are under

consideration subscripts will be used.

• The column vector of all zeros except for a one in position i: ei

• The column vector of all ones: e

• The tth iterate of the power method xTt = xTt−1P : xTt

• λi(P) denotes the ith largest eigenvalue of P. This notation will only be used when

all of the eigenvalues of P are real and thus can be ordered.

9



CHAPTER 2

(Reverse) Simon-Ando Theory

The data clustering method introduced in this thesis is based on the variable aggregation

work of the Nobel prize winning economist and twentieth century polymath Herbert Simon

and his collaborator Albert Ando [74]. In Section 2.1 we will introduce the assumptions

and conclusions of Simon-Ando theory. To keep the exposition as uncluttered as possible

this section will refer to the data clustering application only when absolutely necessary. In

Section 2.4, we will return to the data clustering problem and show how a reinterpretation

of this theory suggests a clustering algorithm.

2.1 Simon-Ando theory, Part One

Simon-Ando theory was originally designed to help understand the short and long-term

behavior of a large economy that could be divided into two or more almost independent

10



economies. One example of such a system would be a collection of robust national

economies that have little interaction with each other. Another example would be a set

of industrial sectors where trade is prevalent between companies in the same sector but

not across sectors. Figure 2.1 illustrates a simple Simon-Ando system and shows how to

construct a matrix that represents such a system.

εBD

ε
CA

A

B

C

D

E

F G

ε
AC

εDB

εBF

εFB

εEG

εGE

Figure 2.1: A simple Simon-Ando system in pictorial and matrix form. The circles
on the left could represent three countries with strong internal trade (solid lines), but
little international trade (dashed lines). Each matrix row and its corresponding column
represent a particular industry. Thus the entry at row i, column j of the matrix represents
some flow of goods or capital from company i to company j. For a Simon-Ando system,
the matrix will have relatively large values in the diagonal blocks and relatively small
ones elsewhere.

Such a closed economic system, without any outside influences, is known to eventually

reach a state of equilibrium, that is, after some initial fluctuations, the flow of goods and

capital between any two industries will remain more or less constant. Rather than waiting

for this economic equilibrium to occur, Simon and Ando tried to predict the long-term

equilibrium by making only short-term observations. They proved that what happens in

the short run completely determines the long-term equilibrium.
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Over the years scholars in a variety of disciplines have realized the usefulness of a

framework that represents a number of tightly-knit groups that have some loose association

with each other, and Simon-Ando theory has been applied in areas as diverse as ecology

[58], computer queueing systems [16], brain organization [80], and urban design [70].

Simon himself went on to apply the theory to the evolution of multicellular organisms

[73].

Definition 2.1. An n×n real-valued matrix P is uncoupled if there exists a permutation

matrix Q such that

QPQT =



P?
11 0 . . . 0

0 P?
22 . . . 0

...
...

. . .
...

0 0 . . . P?
kk


,

where each P?
ii is square.

A matrix with the structure of the one in Figure 2.1 is not uncoupled since there

are non-zero values in the off-diagonal blocks. But these values are small relative to the

magnitude of the diagonal blocks, so we will use the term nearly uncoupled to describe

such a matrix and beg the reader’s indulgence on the imprecision of such a term until we

develop a measure of “near uncoupledness” in Section 3.2.3.

If the consensus similarity matrix S defined in section 1.2 is nearly uncoupled, this

thesis aims to show how Simon-Ando theory can be used to cluster the data it describes.

Matrix S also has other properties not required by Simon-Ando but which will be useful

as we develop this clustering method.

First, since S was constructed to show how often element i clustered with element j it

is necessarily true that sij = sji, that is S is symmetric. The fact that S is both nearly

12



uncoupled and symmetric allows us to make another statement about its structure.

Definition 2.2. 1 An n×n real-valued matrix S is reducible if there exists a permutation

matrix Q such that

QSQT =

 X Z

0 Y

 ,
where both X and Y are square.

Definition 2.3. A matrix S is irreducible if it is not reducible.

Theorem 2.4. If P is a symmetric matrix, then P is irreducible if and only if P is not

uncoupled.

Proof. (⇒) By contradiction. Assume P is irreducible and uncoupled. Since P is

uncoupled there exists a permutation matrix Q such that

QPQT =



P?
11 0 . . . 0

0 P?
22 . . . 0

...
...

. . .
...

0 0 . . . P?
kk


=

 X Z

0 Y

 ,

where X = P?
11 and

Y =


P?

22 . . . 0

...
. . .

...

0 . . . P?
kk

 .
But Q also demonstrates that P is reducible, which is a contradiction and thus P is not

uncoupled.

1From here through page 14, definitions are given for some common terms in the study of nonnegative
matrices and of Markov chains that may be unknown to the general reader. If more background is needed,
consult any good treatment of nonnegative matrices (for example, Chapter 8 in either [39] or [60]).
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(⇐) By contradiction. Assume P is not uncoupled and reducible. Since P is reducible

there exists a permutation matrix Q such that

QPQT =

 X Z

0 Y

 ,
where X and Y are both square. Since P is symmetric, this implies

QPQT =

 X 0

0 Y

 ,
which means P is uncoupled - a contradiction. So, P is irreducible.

Definition 2.5. An n× n real-valued matrix P whose entries all lie in the interval [0, 1]

is row stochastic if
n∑
j=1

pij = 1 for each i = 1, 2, . . . , n.

and column stochastic if

n∑
i=1

pij = 1 for each j = 1, 2, . . . , n.

Definition 2.6. A matrix P is doubly stochastic if it is both row and column stochastic.

Definition 2.7. The row vector πT is a stationary distribution vector of the stochastic

matrix P if it satisfies the equations

πT = πTP,

πT ≥ 0 i.e. each element of πT is nonnegative, and

πTe = 1.
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For reasons that will soon become apparent, our clustering method will also require

that we convert the matrix S into doubly stochastic form, creating a new matrix we will

call P. We will address how this is done in Chapter 3 along with proving that such a

conversion preserves irreducibility, symmetry, and near uncoupledness. The preservation

of these properties is important since our new clustering algorithm uses the contents of

the stationary distribution vector of P to identify clusters. Irreducibility guarantees the

existence and uniqueness of the stationary distribution vector ([72], p. 119), while double

stochasticity guarantees its form.

2.2 Stochastic complementation

We will now take a short detour to define the stochastic complement of a diagonal block Pii

and prove some results concerning stochastic complements that will aid in the explanation

of Simon-Ando theory and in the development of our clustering algorithm.

Definition 2.8. (Meyer [59]) If P is an irreducible, stochastic matrix with the structure

P =



P11 P12 . . . P1k

P21 P22 . . . P2k

...
...

. . .
...

Pk1 Pk2 . . . Pkk


,

then each diagonal block Pii has a stochastic complement in P defined by

Cii = Pii + Pi? (I−Pi)
−1 P?i, (2.1)

where Pi is the matrix obtained by deleting the ith row and ith column of blocks from P,
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Pi? is the ith row of blocks of P with Pii removed, and P?i is the ith column of blocks of

P with Pii removed. (See Figure 2.2 for an example using this definition.)

We are assured that (I−Pi)
−1 in (2.1) exists since every principal submatrix of I−P

of order n− 1 or smaller is a nonsingular M -matrix. Furthermore, each of the entries of

(I−Pi)
−1 is nonnegative [8].

P =


P11 P12 P13 P14

P21 P22 P23 P24

P31 P32 P33 P34

P41 P42 P43 P44



C22 = P22 + P2? (I−P2)−1 P?2

C22 = P22 +
[

P21 P23 P24

]  I−P11 −P13 −P14

−P31 I−P33 −P34

−P41 −P43 I−P44

−1  P12

P32

P42



Figure 2.2: The equation for the stochastic complement C22 when P is a matrix with
four square diagonal blocks.

The stochastic complements of P share some of the same characteristics as pointed

out in this theorem.

Theorem 2.9. (Meyer [59]) If P is an irreducible, stochastic matrix then each stochastic

complement Cii is irreducible and stochastic.

We need to extend this result to show that if P is irreducible and doubly stochastic,

then so is each Cii. We will prove this after first establishing a lemma that provides a

tool that helps with the theorem’s proof.
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Lemma 2.10. (Meyer [59]) Let P be the n × n irreducible, doubly stochastic, nearly

uncoupled matrix

P =



P11 P12 . . . P1k

P21 P22 . . . P2k

...
...

. . .
...

Pk1 Pk2 . . . Pkk


,

where each diagonal block Pii is square and of size ni × ni. Let Q be the permutation

matrix associated with an interchange of the first and ith block rows and let P̃ be defined

as

P̃ = QPQT .

If P̃ is partitioned into a 2× 2 block matrix

P̃ =

 P̃11 P̃12

P̃21 P̃22

 where P̃11 = Pii, (2.2)

then the stochastic complement of Pii in P is

Cii = C̃11 = P̃11 + P̃12

(
I− P̃22

)−1

P̃21. (2.3)

Proof. First let us demonstrate how to construct Q. Let a be the number of the

first row (column) of Pii, and b the number of the last row (column) of Pii. These two

quantities can be defined as

a = n1 + n2 + · · ·+ ni−1 + 1, and

b = n1 + n2 + · · ·+ ni.
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Q can then be constructed to be the permutation matrix corresponding to the permutation

(a, a+ 1, . . . , b, 1, . . . , a− 1) if b = n, or

(a, a+ 1, . . . , b, 1, . . . , a− 1, b+ 1, . . . , n) otherwise.

It now needs to be shown that the expressions for Cii in (2.1) and (2.3) are equivalent,

that is

Pii + Pi? (I−Pi)
−1 P?i = P̃11 + P̃12

(
I− P̃22

)−1

P̃21.

Since P̃11 = Pii this simplifies to showing

Pi? (I−Pi)
−1 P?i = P̃12

(
I− P̃22

)−1

P̃21.

Since Q is constructed such that the relative order of the rows and columns that are not

a part of Pii are not changed, Pi? = P̃12, Pi = P̃22, and P?i = P̃21. Thus Cii = C̃11.

Theorem 2.11. If

P =



P11 P12 . . . P1k

P21 P22 . . . P2k

...
...

. . .
...

Pk1 Pk2 . . . Pkk


is an irreducible, doubly stochastic matrix, then each stochastic complement is also an

irreducible, doubly stochastic matrix.

Proof. We need only prove that Cii is doubly stochastic. For a given i, suppose

diagonal block Pii has been repositioned such that P̃11 = Pii as in (2.2) of Lemma 2.10.

Since the permutation matrix Q only reordered the rows and columns, it could not

change row or column sums, and hence both the row and column sums of P̃ are one.
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Allowing the size of e, the column vector of all ones, to be whatever is appropriate for

the context, the following four equations are true.

P̃11e + P̃12e = e (2.4)

P̃21e + P̃22e = e (2.5)

eT P̃11 + eT P̃21 = eT (2.6)

eT P̃12 + eT P̃22 = eT (2.7)

Equations (2.5) and (2.7) can be rewritten to yield

e =
(
I− P̃22

)−1

P̃21e and eT = eT P̃12

(
I− P̃22

)−1

.

As noted earlier (I− P̃22)−1 ≥ 0 and hence

C̃11 = P̃11 + P̃12

(
I − P̃22

)−1

P̃21 ≥ 0.

Multiplying C̃11 on the right by e yields

C̃11e = P̃11e + P̃12

(
I − P̃22

)−1

P̃21e = P̃11e + P̃12e = e,

while multiplying it on the left by eT gives

eT C̃11 = eT P̃11 + eT P̃12

(
I − P̃22

)−1

P̃21 = eT P̃11 + eT P̃21 = eT .

Therefore, since Cii = C̃11, each stochastic complement is doubly stochastic.
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The following corollary is essential for using Simon-Ando theory in cluster analysis.

Corollary 2.12. If

P =



P11 P12 . . . P1k

P21 P22 . . . P2k

...
...

. . .
...

Pk1 Pk2 . . . Pkk


is an n× n irreducible, doubly stochastic matrix, then the stationary distribution vector of

the ni × ni stochastic complement Cii is

cTi = (
1

ni

1

ni
. . .

1

ni
).

Proof. By definition, cTi must satisfy the equation cTi = cTi Cii, that is cTi must be the

left hand eigenvector of Cii associated with the eigenvalue 1. Since Cii is irreducible by

Theorem 2.9, the Perron-Frobenius theorem guarantees that cTi exists and is unique.

Since Cii is doubly stochastic, we can also consider the equation

(
cTi Cii

)T
=

(
cTi
)T

CT
iici = ci

which means ci is the right hand eigenvector of Cii associated with the eigenvalue 1,

which for stochastic matrices is the constant vector. So now cTi must be a nonnegative,

constant vector whose elements sum to 1. Therefore,

cTi = (
1

ni

1

ni
. . .

1

ni
).

Therefore the stationary distribution vector for each stochastic complement is the uniform
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distribution vector.

That concludes our discussion of stochastic complementation. We will now examine

how the elements in a probability distribution vector change over repeated multiplications

by the matrix P. As we will see, one of the central results of Simon-Ando theory is that

these changes follow a predictable pattern.

2.3 Simon-Ando theory, Part Two

Let xT0 be a probability row vector and consider the evolution equation

xTt = xTt−1P (2.8)

or its equivalent formulation

xTt = xT0 Pt. (2.9)

Simon-Ando theory asserts that xTt passes through distinct stages as t goes to infinity.

Initially, xTt goes through changes driven by the comparatively large values in each

diagonal block Pii. Once these changes have run their course, the elements of xTt settle

into a short period of stabilization before the small values in the off-diagonal blocks affect

small, but predictable changes in xTt .2

When P is a stochastic matrix, the structure of xTt during these periods of stabiliza-

tion and predictable change can be described in terms of each stochastic complements’

stationary distribution vectors [59]. In particular, during the short-term stabilization

xTt ≈ (α1c1 α2c2 . . . αkck) (2.10)

2See pages 118 - 127 Simon and Ando’s original paper [74] for additional details. For a more modern
proof of Simon and Ando’s results, see [36].
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where each αi is a constant dependent on the initial probability vector xT0 . During the

period of predictable change, which we will call middle-run evolution,

xTt ≈ (β1c1 β2c2 . . . βkck) (2.11)

where each βi is dependent on t.

Since we know the stationary probability distribution of a doubly stochastic matrix,

for the matrices considered in this thesis, (2.10) and (2.11) become

xTt ≈
(
α1

n1

α1

n1

. . .
α1

n1

α2

n2

α2

n2

. . .
α2

n2

. . .
αk
nk

αk
nk

. . .
αk
nk

)
(2.12)

xTt ≈
(
β1

n1

β1

n1

. . .
β1

n1

β2

n2

β2

n2

. . .
β2

n2

. . .
βk
nk

βk
nk

. . .
βk
nk

)
. (2.13)

Though xTt is not precisely equal to a vector created by concatenating multiples of

each stochastic complement’s stationary distribution vector, the bound on the difference

between the left and right sides in Equations (2.10) and (2.11) is well-defined [59].

Specifically, if we assume that

C =



C11 0 . . . 0

0 C22 . . . 0

...
...

. . .
...

0 0 . . . Ckk


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and Z−1CZ is a diagonal matrix3 then

||xTt − (α1c1 α2c2 . . . αkck)|| ≤ tδ + ||Z||∞||Z−1||∞|λk+1|t (2.14)

where δ = 2 maxi ||Pi?||∞ and |λk+1| is the magnitude of the largest eigenvalue of C not

equal to one.

If during short-term equilibrium ||xTt − (α1c1 α2c2 . . . αkck)|| is always less than ε,

then throughout middle-run evolution

||xTt − (β1c1 β2c2 . . . βkck)|| ≤ ε (2.15)

The fact that xTt has this predictable structure is key to using Simon-Ando theory

for data clustering. But, since this theory was developed not for clustering data, but for

forecasting long-term economic trends, we need to look at it from a different angle which

is the topic of the next section.

2.4 (Reverse) Simon-Ando Theory

Simon and Ando were not interested in clustering data. For them, the importance of

stages like short-term stabilization and middle-run evolution lie in the fact that even for

small values of t, the structure of xTt reflected the stationary probability vectors of the

smaller Pii matrices. From there, examination of the xTt vector during the relatively stable

periods would allow for determination of these smaller stationary probability vectors and

facilitate the calculation of the stationary probability vector for P.

3C is not required to be diagonalizable. See pp. 266-267 of [59] for the bound if C is reduced to
Jordan canonical form.
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For cluster analysis however, the focus is turned around. Since we will be using doubly

stochastic P matrices, we already know that the stationary probability vector is the

uniform probability vector. We also know that each diagonal block Pii is associated with

a uniform probability vector related to its stochastic complement. Identification of the

clusters then comes down to examining the entries of xTt .

Throughout this chapter we have presented the matrix P with its rows and columns

arranged so that its nearly uncoupled, block diagonal structure was clear. When working

with actual data, P is not going to be in such an easy to interpret form. But the knowledge

of the structure of xTt means we need only look for approximately equal values. For

example, if

xTt = (0.1497 0.1839 0.1793 0.1509 0.1836 0.1526),

then this suggests that we may want to place the first, fourth, and sixth elements in

one cluster, and the second, third, and fifth in another. A more detailed discussion on

determining the relevant gaps is given in Section 5.1.

All the development in this chapter assumed a doubly stochastic matrix. The next

chapter demonstrates how we can convert a matrix to doubly stochastic form, and that

the process does not destroy any of the desirable characteristics of our matrix.

24



CHAPTER 3

Matrix Scaling

We begin this chapter with two definitions.

Definition 3.1. (Meyer [60], p. 661) If all the entries of an m×n matrix A are positive,

that is aij > 0 for i = 1, . . . ,m and j = 1, . . . , n, then A is a positive matrix. Similarly,

if all aij ≥ 0, A is a nonnegative matrix. A > 0 denotes a positive matrix, and A ≥ 0

denotes a nonnegative matrix.

Definition 3.2. (Golub and van Loan [32], pp. 72-74) Matrix scaling is the multiplication

of a matrix by a diagonal matrix with positive diagonal entries. If B is an m× n matrix,

and both m × m matrix D1 and n × n matrix D2 are diagonal matrices with positive

diagonals, then

B̂ = D1BD2

is a scaling of B. If D2 = I the process is sometimes called row scaling, and similarly if
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D1 = I it is called column scaling.

Matrix scaling is used in numerical linear algebra algorithms for solving linear systems,

computing eigenvalues and evaluating matrix functions (see sections 4.5, 7.5, and 11.3,

respectively of [32]) as a way to control the effect extremely large or extremely small

values have on the solution.

In the context of this paper, scaling a matrix B will refer to combined row and column

scaling, i.e. B̂ = D1BD2, with the goal of

n∑
j=1

b̂ij = ρ for i = 1, 2, . . .m (3.1)

and
m∑
i=1

b̂ij = χ for j = 1, 2, . . . n, (3.2)

where ρ and χ are positive constants.

According to several sources ([10, 52, 68]) the first paper written about this type of

matrix scaling is a 1937 article about telephone networks in a German engineering journal

[51]. The method described in that paper and in much of the work to follow is primarily

concerned with developing iterative methods for finding D1 and D2 [11], and the idea

seems to have grown independently in different fields, with the result being a variety of

algorithms which have much in common [71].

In our application of Simon-Ando theory to data clustering we are interested in changing

the consensus similarity matrix S into doubly stochastic form, that is ρ = χ = 1 in (3.1)

and (3.2). This problem has also drawn considerable attention, and in 1964 Sinkhorn

showed that any positive square matrix could be scaled to a unique doubly stochastic

matrix [75].1 As we will see shortly, in 1967 Sinkhorn and Knopp extended this result to

1It is a testament to the enduring interest in the doubly stochastic scaling problem, that at least six
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nonnegative matrices under certain conditions. Though others independently discovered

many of the same results, in the numerical linear algebra community today, a method

for scaling a matrix into doubly stochastic form is typically called a Sinkhorn-Knopp

algorithm [49].

We will save the details of the implementation of the Sinkhorn-Knopp algorithm for

Section 3.3 and use the next two sections to focus on two questions:

1. Does the symmetric consensus matrix S meet the conditions to be scaled into a

doubly stochastic matrix?

2. Will the result of this scaling destroy the irreducibility, symmetry, or near uncoupled-

ness of S?

3.1 Scaling S

It turns out that S will be scalable if its zero entries are in just the right places. The

following definitions help describe the zero structure of matrices and are part of the

hypotheses of the theorems that describe when Sinkhorn-Knopp scaling is possible.

Definition 3.3. (Sinkhorn and Knopp [76]) A nonnegative n × n matrix S is said to

have total support if S 6= 0 and if every positive element of S lies on a positive diagonal,

where a diagonal is defined as a sequence of elements s1σ(1), s2σ(2), . . . , snσ(n) where σ is a

permutation of {1, 2, . . . , n}.2

Definition 3.4. (Minc [64], p.82) An n× n matrix S is partly indecomposable if there

proofs of Sinkhorn’s 1964 results, all using different methods, have appeared in the literature, including
one as late as 1998 [47].

2Notice that by this definition of diagonal, the main diagonal of a matrix is the diagonal associated
with the permutation σ = (1 2 3 . . . n).
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exist permutation matrices P and Q such that

PSQ =

 X Z

0 Y

 ,
where X and Y square.

If no such P and Q exist, then S is fully indecomposable.

Figure 3.1 provides examples to explain the meaning of total support and draw the

distinction between reducible and partly decomposable matrices.

A =

 0 12 0
9 0 2
5 0 8

 B =

 0 12 2
9 0 0
5 0 8


(a) Matrix A has total support since the elements 12, 9,
and 8 lie on the a12, a21, a33 diagonal and the remaining
positive elements 2 and 5 along with 12 lie on the a12,
a23, a31 diagonal. Matrix B, however, does not have total
support since the two diagonals that include b13 = 2, b13,
b21, b32 and b13, b22, b31, both contain a zero.

A =

 6 8 1
0 5 0
3 4 4

 P =

 0 0 1
1 0 0
0 1 0

 PAPT =

 2 3 4
1 6 8
0 0 5



B =

 0 5 0
1 8 6
2 4 3

 P =

 0 0 1
0 1 0
1 0 0

 Q =

 1 0 0
0 0 1
0 1 0

 PBQ =

 2 3 4
1 6 8
0 0 5


(b) The terms reducible (Definition 2.2) and partly decomposable have very similar definitions. The
rows and columns of both A and B can be permuted to obtain the same matrix (PAPT = PBQ),
the difference being that only one matrix (and its transpose) is needed to permute reducible matrix
A while two matrices are needed to permute partly decomposable B.

Figure 3.1: Some examples to illustrate the meanings of total support, reducible, and
partly decomposable.
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Definition 3.5. (Minc [64], p.82) Two matrices A and B are permutation equivalent,

or p-equivalent, if there exist permutation matrices Q and Q̂ such that A = QBQ̂.

This new terminology is needed to understand the following, nearly identical theorems

that were independently proven within a year of each other, the first in 1966 and the

second in 1967.

Theorem 3.6. (Brualdi, Parter, and Schneider [12]) If the n×n matrix A is nonnegative

and fully indecomposable, then there exist diagonal matrices D1 and D2 with positive

diagonal entries such that D1AD2 is doubly stochastic. Moreover D1 and D2 are uniquely

determined up to scalar multiples.

Theorem 3.7. (Sinkhorn and Knopp [76]) If the n× n matrix A is nonnegative, then a

necessary and sufficient condition that there exists a doubly stochastic matrix of the form

D1AD2 where D1 and D2 are diagonal matrices with positive diagonal entries is that A

has total support. If D1AD2 exists, then it is unique. Also D1 and D2 are unique up to

a scalar multiple if and only if A is fully indecomposable.

The uniqueness up to a scalar multiple of D1 and D2 mentioned in both theorems

means that if E1 and E2 are also diagonal matrices such that E1AE2 is doubly stochastic,

then E1 = αD1 and E2 = βD2 where αβ = 1.

The way that the consensus similarity matrix S is constructed guarantees its nonnega-

tivity, so the only thing standing in the way of knowing that the scaling matrices D1 and

D2 exist is showing that S either has total support or is fully indecomposable. Reviewing

the definitions of these terms, neither of these tasks seems inviting. Fortunately, there is

a theorem that will simplify the matter.

Theorem 3.8. (Minc [64], p.86) A nonnegative matrix is fully indecomposable if and

only if it is p-equivalent to an irreducible matrix with a positive main diagonal.
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S is trivially p-equivalent since S = ISI, and S is an irreducible matrix with a positive

main diagonal. Now that we know S is fully indecomposable, its symmetry is going to

guarantee another excellent result. The proof of the following lemma is included since

there was a typographical error in the one included in the original paper. Also the proof

below explicitly shows the algebra leading to the relationship between D and D1.

Lemma 3.9. (Csima and Datta [17]) Let S be a fully indecomposable symmetric matrix.

Then there exists a diagonal matrix D such that DSD is doubly stochastic.

Proof. Let D1 and D2 be nonnegative diagonal matrices such that D1SD2 is doubly

stochastic. Then (D1SD2)T = D2SD1 is also doubly stochastic. By the uniqueness up to

a scalar multiple from Theorems 3.6 and 3.7, we know D2 = αD1 and D1 = βD2. Using

the first of these facts

D1SD2 = D1SαD1

=
√
αD1S

√
αD1

= DSD

shows us that D =
√
α D1.

3.2 The structure of DSD

We will use P as the symbol for the doubly stochastic matrix derived from S, that is

P = DSD. For simplicity of notation, the ith diagonal entry of D will be denoted di.

The next three subsections will demonstrate that like S, P is irreducible, symmetric and

nearly uncoupled.
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3.2.1 Is P irreducible?

Lemma 3.10. If S is an n× n fully indecomposable irreducible matrix and P = DSD is

doubly stochastic, then P is irreducible.

Proof. Since S is irreducible, there is no permutation matrix Q such that

QSQT =

 X Z

0 Y

 .
where both X and Y are square.

Thus the only way that P = DSD could be reducible is if the zero structure of S is

changed by the multiplication. But notice that since pij = didjsij and both di and dj

are positive, pij = 0 only when sij = 0. So the zero structure does not change, and P is

irreducible.

3.2.2 Is P symmetric?

Since the number of times elements i and j cluster with one another is necessarily equal

to the number of times elements j and i cluster with one another, the symmetry of the

consensus similarity matrix S reflects a real-world property of the consensus clustering

problem and so it is important that symmetry is not lost when S is converted into P.

Let us first note that some people’s intuition leads them to believe that a doubly

stochastic matrix is necessarily symmetric. However, notice that


1
3

1
3

1
3

1
2

1
4

1
4

1
6

5
12

5
12



31



is doubly stochastic but not symmetric.

Lemma 3.11. If S is an n× n fully indecomposable symmetric matrix and P = DSD is

doubly stochastic, then P is symmetric.

Proof.

PT = (DSD)T = DSTD = DSD = P

P is symmetric.

3.2.3 Effect on nearly uncoupled form

We wish to prove that if S is nearly uncoupled, then so is P. To do so we first need a

formal definition of near uncoupledness. Then we will show how this uncoupling measure

for P is related to the uncoupling measure of S.

Definition 3.12. Let n1 and n2 be fixed positive integers such that n1 + n2 = n, and let

S be an n× n symmetric, irreducible matrix whose respective rows and columns have been

rearranged to the form

S =

 S11 S12

S21 S22


where S11 is n1 × n1 and S22 is n2 × n2 so that the ratio

σ(S, n1) =
eTS12e + eTS21e

eTSe
=

2eTS12e

eTSe

is minimized over all symmetric permutations of S. The quantity σ(S, n1) is called the

uncoupling measure of S with respect to parameter n1. In other words σ(S, n1) is the ratio

of the sum of the elements in the off-diagonal blocks to the sum of all the matrix entries.
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Theorem 3.13. If S is the n× n consensus matrix created from r clustering results and

σ(S, n1) = β, then for the doubly stochastic matrix P = DSD, σ(P, n1) ≤ Σ
nr
β, where

Σ = eTSe.

Proof. By the way we constructed S, sii = r for i = 1, 2, . . . , n. Since pii = didisii and

pii ≤ 1, it follows that d2
i r ≤ 1→ di ≤ 1√

r
.

If we impose the same block structure on D that exists for S, that is

D =

 D1 0

0 D2

 ,
and recall that P is doubly stochastic,

σ(P, n1) =
2eTD1S12D2e

n

Since each element of D1 and D2 is less than 1√
r
,

σ(P, n1) ≤

(
1√
r

)2

(2eTS12e)

n

=
Σ

nr
σ(S, n1)

=
Σ

nr
β

The bound is found.
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3.3 The Sinkhorn-Knopp algorithm

If one were to naively approach writing a computer program to convert any nonnegative

matrix A to doubly stochastic form the code would probably look like this:

1. Divide each element of the matrix by its row sum.

2. Divide each element of the matrix by it column sum.

3. Repeat until that last two iterations of steps 1 and 2 yield two matrices within a

certain tolerance of each other.

It turns out that such an approach works. In terms of matrix multiplication this

repetition of row/column scaling would be

P = RkRk−1 . . .R2R1AC1C2 . . .Ck−1Ck

where Ri is the row-scaling diagonal matrix used the ith time through the loop and Ci is

the respective column-scaling matrix. This equation can be simplified by multiplying all

of the row and column-scaling matrices together to get

P = D1AD2.

Since in the end all that is needed are the two vectors that make up the diagonals

of D1 and D2, many programmers just find them through an iterative method. Let r

represent the diagonal of D1 and c the diagonal of D2, set r = e and repeat the following

two MATLAB command within a loop:

c = 1./(A’*r);

r = 1./(A*c);
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In our case where the input matrix is symmetric, these two commands collapse into

one

x = 1./(A*x);

though in this case x alternates between c and r, so the vectors from two consecutive

iterations have to be taken and then the
√
α from Lemma 3.9 is computed to find d, the

vector that becomes the diagonal of D.

Whether using one or two MATLAB commands, the loop continues until a stopping

criteria is met. Two typical stopping criteria that involve a tolerance ε and a norm || · ||

are

1. Stop when successive values of c and r differ by less than the tolerance, i.e.

||cn+1 − cn|| < ε and ||rn+1 − rn|| < ε.

2. Stop when

||D1AD2e− e|| < ε and ||eT − eTD1AD2|| < ε.

In general, using these stopping criteria, the Sinkhorn-Knopp algorithm converges

linearly [78], that is

||d− xk+2|| ≤ γ||d− xk|| (3.3)

where 0 < γ < 1. If γ ≈ 1, convergence will be slow.

Knight has shown [49] that if A is symmetric, nonnegative, and fully indecomposable

(which our S is), there exists a norm and there exists a point in the the iterative process

after which

||d− xk+2|| ≤ |λ2|2||d− xk|| (3.4)
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where λ2 is the eigenvalue of P that is second largest in magnitude. Though this is

encouraging, the upcoming discussion in Chapter 4 will show that in most clustering

cases, λ2 is quite close to one. That being said, it is still better than the general case of

linear convergence, though a user must be aware of the possibility of slow convergence.

36



CHAPTER 4

The role of the second eigenvalue

As we now move on to consider the eigenvalues of P, it will be helpful to have some

common notation and vocabulary for eigenvalues in general.

Definition 4.1. (Meyer [60], p. 490) If A is n× n the set of s ≤ n distinct eigenvalues

is called the spectrum of A. The elements of the spectrum are numbered so that

|λ1| ≥ |λ2| ≥ |λ3| ≥ · · · ≥ |λs|.

If context demands we be specific about which matrix we are referring to, the notation

λi(B) will be used to denote the ith eigenvalue of matrix B.

Now that S has been converted into the doubly stochastic matrix P, it turns out that

an examination of the eigenvalues of P is quite helpful in determining the structure of

the underlying data set. Here are some facts about the eigenvalues of P [60].
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1. Since P is stochastic, all of its eigenvalues lie on or inside the unit circle of the

complex plane.

2. Since P is real-symmetric, all of its eigenvalues are real. Combined with the last

fact, this means all eigenvalues of P reside in the interval [−1, 1].

3. The largest eigenvalue of P is one, and since P is irreducible, that eigenvalue is

simple (i.e. it appears only once).

4. λi(P) 6= −1 for any i because P is a primitive matrix. P is primitive because it is

irreducible and has at least one positive diagonal element (p. 678, [60]).

For those who work with stochastic matrices, the magnitude of the eigenvalues other

than λ1(P) is also of interest. For example, Markov chain researchers know that the

asymptotic convergence rate, that is, the expected number of digits of accuracy gained in

each iteration of calculating the chain’s stationary distribution vector is − log10 |λ2(P)|

[53, 60].

Our aim however is quite different; we want a second eigenvalue near one. Slow

convergence is a good thing for us since it allows time to examine the elements of xt as it

passes through short-term equilibrium and middle-run evolution. Also, λ2(P) ≈ 1 may

indicate that the matrix is nearly uncoupled [81]. Later in this chapter we will show that

λ2(P) ≈ 1 along with other properties of P guarantees that P is nearly uncoupled.

4.1 Nearly Uncoupled Form and λ2(P)

We have already established that λ1(P) = 1 and that λ2(P) < 1. The goal of this section

is to make a concrete connection between the size of λ2(P) and the near uncoupledness of

P. Those results will be proven in Theorems 4.4 and 4.5, after two lemmas.
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Lemma 4.2. If {Pk} is a sequence of symmetric matrices with limit P0, then P0 is

symmetric.

Proof.

lim
k→∞

Pk = P0 ⇒ lim
k→∞

PT
k = PT

0

but

lim
k→∞

Pk = lim
k→∞

PT
k since Pk = PT

k .

So P0 = PT
0 .

Lemma 4.3. If {Pk} is a sequence of stochastic matrices with limit P0, then P0 is

stochastic.

Proof. Since Pk is stochastic, Pke = e. It follows that

lim
k→∞

Pke = lim
k→∞

e(
lim
k→∞

Pk

)
e = lim

k→∞
e

P0e = e

Therefore, P0 is stochastic.

Theorem 4.4. For a fixed integer n > 0, consider the n × n irreducible, symmetric,

doubly stochastic matrix P. Given ε > 0, there exists a δ > 0 such that if σ(P) < δ,

then |λ2(P)− 1| < ε. In other words, if P is sufficiently close to being uncoupled, then

λ2(P) ≈ 1.
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Proof. Let ε > 0. Consider a sequence of irreducible, symmetric, doubly stochastic

matrices

Pk =

 P
(k)
11 P

(k)
12

P
(k)
21 P

(k)
22


defined so that lim

k→∞
σ(Pk) = 0. The Bolzano-Weierstrass theorem ([4], p. 155) guarantees

that this bounded sequence has a convergent subsequence Pk1 ,Pk2 , . . . which converges

to a stochastic matrix C whose structure is

C =

 C11 0

0 C22

 , C11 6= 0,C22 6= 0,

where each Cii is stochastic. By the well-known but rarely proven continuity of eigenval-

ues,1 there exists an M such that for ki > M ,

|λ2(Pki
)− λ2(C)| < ε

|λ2(Pki
)− 1| < ε,

and the theorem is proven.

Theorem 4.5. For a fixed integer n > 0, consider the n×n irreducible, symmetric, doubly

stochastic matrix P. Given ε > 0, there exists a δ > 0 such that if |λ2(P)− 1| < δ, then

σ(P) < ε. In other words, if λ2(P) is sufficiently close to 1, then P is nearly uncoupled.

Proof. By contradiction. Suppose there is an ε > 0 such that for any δ > 0 there

is an n × n irreducible, symmetric, doubly stochastic matrix P with |λ2(P) − 1| < δ

1The typical method of proof is to use Rouché’s Theorem from complex analysis which states that the
zeros of a polynomial equation are continuous functions of the polynomial’s coefficients. This result is
then applied to the characteristic polynomial (see [40] pp. 136-139 or [66] pp. 42-45). Those interested in
an approach grounded in perturbation theory should consider the resolvent theory of Kato ([48], Section
1.5) and the exposition in [61].
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and σ(P) > ε. For δ = 1
k

let Pk be such a matrix. Again, there must be a subsequence

Pi1 ,Pi2 , . . . which converges, say to P0. Then P0 must have λ2(P0) = 1 and thus

σ(P0) = 0. Yet, σ(P0) = limk→∞ σ(Pk) ≥ ε, a contradiction.

Although we already have an uncoupling measure σ(S) for a general matrix, for doubly

stochastic matrices this theorem allows us to use λ2 as an uncoupling indicator with a

value near one signifying almost complete uncoupling.

4.2 The Perron cluster

There may be additional eigenvalues of P that are close to one. This group of eigenvalues

is called the Perron cluster, and in the case where all eigenvalues are real the Perron

cluster can be defined as follows.

Definition 4.6. Let P be an n×n symmetric, stochastic matrix with eigenvalues, including

multiplicities, of 1 = λ1 ≥ λ2 ≥ λ3 ≥ · · · ≥ λn. If the largest difference between consecutive

eigenvalues occurs between λk and λk+1, the set {1, . . . λk} is called the Perron cluster of

P. The larger the gap, the more well-defined the cluster is.

Some researchers use the number of eigenvalues in the Perron cluster as the number of

clusters they search for [28, 18]. This inference is a natural extension of Theorems 4.4 and

4.5, that is if P had k eigenvalues sufficiently close to 1, then P is nearly uncoupled with

k dominant diagonal blocks emerging after an appropriate permutation of QPQT . This

is also the approach we will take with the stochastic clustering algorithm. Unlike with

the vast majority of clustering methods, the user will not have to tell the algorithm the

number of clusters in the data set unless they explicitly want to override the algorithm’s

choice. Instead, the stochastic clustering algorithm will set k equal to the size of the

Perron cluster.
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CHAPTER 5

The Stochastic Clustering Algorithm

5.1 Putting the concept into practice

Now that the theoretical underpinnings are in place, it is time to formally describe the

stochastic clustering algorithm.

The algorithm takes as input the consensus similarity matrix S which the user has

created from whatever combination of clustering methods and/or parameter settings they

choose. S is then converted into the doubly stochastic matrix P using the algorithm

from Section 3.3. All eigenvalues are computed using MATLAB’s eig command, and

the Perron cluster of P is identified. For large-scale problems, the user can direct the

program to find only the g largest eigenvalues and then identify the Perron cluster of that

subset of the eigenvalues. The stochastic clustering algorithm then separates the data

into k clusters, where k is the number of eigenvalues in the Perron cluster.
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Stochastic Clustering Algorithm (SCA)

1. Create the consensus similarity matrix S using clustering ensemble of
user’s choice.

2. Use matrix balancing to convert S into a doubly stochastic symmetric
matrix P.

3. Calculate the necessarily real eigenvalues of P. The number of clusters,
k, is number of eigenvalues in the Perron cluster.

4. Create a random xT0 .

5. Track the evolution xTt = xTt−1P. After each multiplication, sort the
the elements of xTt and then separate the elements into k clusters by
dividing the sorted list at the k − 1 largest gaps. When this clustering
has remained the same for a user-defined number of iterations, the final
clusters have been determined.

Figure 5.1: The Stochastic Clustering Algorithm

Starting with a randomly generated xT0 , xTt = xTt−1P is evaluated. After each calcula-

tion, the entries of xTt are sorted, the k − 1 largest gaps in the sorted list identified and

used to divide the entries into k clusters. When starting the algorithm, the user inputs

the number of consecutive identical clusterings needed to bring the algorithm to a close.

Once that number is reached, the program stops and the clusters returned as output.

Figure 5.1 summarizes the algorithm.

5.2 A Small Example

Consider the small data matrix A in Figure 5.2. Each column of the matrix contains the

career totals in nine statistics for a famous baseball player. Those familiar with baseball

history would probably group these six players into singles hitters (Rose and Cobb), power

hitters (Mays, Ott, and Ruth), and a great catcher who doesn’t necessarily fit into either
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group (Fisk).

The consensus similarity matrix was built using the multiplicative update version of

the nonnegative matrix factorization algorithm [54]. Since it is not clear whether two or

three clusters would be most appropriate, S was created by running this algorithm 50

times with k = 2 and 50 times with k = 3.

With a small example like this, especially one where the players that will cluster

together have been purposely placed in adjacent columns, it would be simple enough to

cluster the players through a quick scan of S. But since the purpose here is to illustrate

how the algorithm works, we will continue by applying the Sinkhorn-Knopp algorithm to

create a doubly stochastic matrix P.

The eigenvalues of P are 1.00, 0.88, 0.19, 0.09, 0.06, and 0.03. The largest gap in this

ordered list of eigenvalues is between 0.88 and 0.19, so there are two eigenvalues in the

Perron cluster, and thus the stochastic clustering algorithm will look for two clusters in

the data set.

Table 5.1 shows the results of a run of the stochastic clustering algoritm. The initial

probability vector xT0 was chosen randomly, and the table shows the value of xTt and the

corresponding clusters for the next six steps of the algorithm. Since k = 2, the clusters are

determined by ordering the entries of xt, finding the largest gap in this list, and clustering

the elements on either side of this gap. For example, when t = 4 in Table 5.1 the ordered

list would be

0.1601, 0.1606, 0.1612, 0.1716, 0.1732, 0.1733,

and the largest gap is between 0.1612 and 0.1716. This leads to the numerical clustering

of {0.1601, 0.1606, 0.1612} and {0.1716, 0.1732, 0.1733}, which translates to the player

clustering {Rose, Cobb, Fisk} and {Ott, Ruth, Mays}.
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A=



Rose Cobb Fisk Ott Ruth Mays

G 3562 3034 2499 2730 2503 2992
R 2165 2246 1276 1859 2174 2062
H 4256 4189 2356 2876 2873 3283
2B 746 724 421 488 506 523
3B 135 295 47 72 136 140
HR 160 117 376 511 714 660
RBI 1314 1938 1330 1860 2213 1903
SB 198 897 128 89 123 338
BB 1566 1249 849 1708 2062 1464


(a) The games played, runs, hits, doubles, triples, home runs, runs
batted in, stolen bases, and bases on balls career totals for Pete Rose,
Ty Cobb, Carlton Fisk, Mel Ott, Babe Ruth, and Willie Mays.[5]

S=



Rose Cobb Fisk Ott Ruth Mays

Rose 100 66 77 3 1 4
Cobb 66 100 57 1 0 7
Fisk 77 57 100 14 7 19
Ott 3 1 14 100 90 80
Ruth 1 0 7 90 100 84
Mays 4 7 19 80 84 100


(b) The consensus matrix.

P=



Rose Cobb Fisk Ott Ruth Mays

Rose 0.4004 0.2828 0.2872 0.0112 0.0038 0.0146
Cobb 0.2828 0.4584 0.2275 0.0040 0 0.0273
Fisk 0.2872 0.2275 0.3474 0.0486 0.0248 0.0645
Ott 0.0112 0.0040 0.0486 0.3465 0.3186 0.2711
Ruth 0.0038 0 0.0248 0.3186 0.3618 0.2909
Mays 0.0146 0.0273 0.0645 0.2711 0.2909 0.3316


(c) The doubly stochastic, symmetric matrix with entries rounded to four places.

Figure 5.2: The three matrices associated with our small example.
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Table 5.1: The Stochastic Clustering Algorithm for the Small Example

t xt Clusters
0

(
0.1735 0.1476 0.2110 0.1015 0.1465 0.2198

)
{Rose, Cobb, Fisk, Ruth, Mays}

{Ott}
1

(
0.1767 0.1712 0.1798 0.1542 0.1552 0.1632

)
{Rose, Cobb, Fisk, Mays }

{Ott, Ruth}
2

(
0.1754 0.1743 0.1739 0.1585 0.1579 0.1599

)
{Rose, Cobb, Fisk}
{Ott, Ruth, Mays }

3
(

0.1742 0.1741 0.1724 0.1597 0.1592 0.1605
)

{Rose, Cobb, Fisk}
{Ott, Ruth, Mays}

4
(

0.1732 0.1733 0.1716 0.1606 0.1601 0.1612
)

{Rose, Cobb, Fisk}
{Ott, Ruth, Mays }

5
(

0.1724 0.1725 0.1710 0.1613 0.1609 0.1619
)

{Rose, Cobb, Fisk}
{Ott, Ruth, Mays }

6
(

0.1717 0.1718 0.1704 0.1620 0.1616 0.1625
)

{Rose, Cobb, Fisk}
{Ott, Ruth, Mays}

The clusters change after the first two iterations, but then remain unchanged. The

stochastic clustering algorithm allows the user to decide how many consecutive identical

clusterings define a stopping condition. If that number is five, then the final clustering of

{Rose, Cobb, Fisk} and {Ott, Ruth, Mays} is determined when t = 6. For the reader

curious about whether the clustering changes at some later point, the algorithm was run

through t = 1000, and the same clustering was found at each step.

46



CHAPTER 6

Some concerns

As is to be expected with a new algorithm, actual implementation of ideas that looked fine

on paper can still be problematic. Even before implementation, there may be concerns

about perceived weak links in the algorithm. In this chapter we will address some of these

concerns. Since this chapter and Chapter 7 are tightly coupled, it will be hard to talk

about these issues without highlighting some of the results to come. Hopefully, no great

surprises are spoiled, and the turning of pages back and forth is kept to a minimum.

6.1 Impact of initial probability vectors

The fact that the stochastic clustering algorithm depends on a random initial probability

vector (IPV) raises the question of whether all random probability vectors will lead to

the same clustering. Since P is irreducible, we are guaranteed that the matrix has a
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stationary distribution vector, regardless of the IPV. But for clustering purposes that

is not the issue. Instead we would like to have confidence that for a certain IPV, xTt

will remain in short-term equilibrium and middle run evolution long enough for us to

identify the clusters. Secondly, as we will see soon in Chapter 7, different IPVs can lead

to different cluster results.

We will consider the IPV question in two parts, first addressing the rare occurrence

of an IPV that does not lead to a clustering at all, and then considering the fact that

different IPVs can lead to different clusterings.

6.1.1 IVPs leading to no solution

Clearly not every initial probability vector will help us in data clustering. Suppose, for

example, that

xT0 =

(
1

n

1

n

1

n
. . .

1

n

)
1×n

.

Since Pn×n is doubly stochastic, xT0 is its stationary distribution vector. With such a

choice for the IPV, xTt never changes and we have lost any ability to group the probabilities

in xTt in order to cluster the original data.

A natural follow-up question would be whether small perturbations to the uniform

probability vector also lead to values of xTt that make any clustering assignment impossible.

For example, construct an IPV of the form

xT0 =

(
1

n
+ ε1

1

n
+ ε2 . . .

1

n
+ εn

)

where
∑n

i=1 εi = 0 and 0 ≤ 1
n

+ εi ≤ 1 for i = 1, . . . , n.
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Examining the first element of xT1 after performing the iteration xT1 = xT0 P yields,

xT1 (1) =

(
1

n
+ ε1

)
p11 +

(
1

n
+ ε2

)
p21 + · · ·+

(
1

n
+ εn

)
pn1

=
1

n
(p11 + p21 + · · ·+ pn1) + ε1p11 + ε2p21 + · · ·+ εnpn1

=
1

n
+ ε1p11 + ε2p21 + · · ·+ εnpn1,

suggests that if the system


P

1 · · · 1


(n+1)×n



ε1

ε2
...

εn


n×1

=



0

0

...

0


(n+1)×1

(P̃ε = 0) (6.1)

has a non-trivial solution, then xT1 is the uniform probability vector and again any hope

of finding clusters by looking at the entries of xTt is lost.

Note that any solution to (6.1) must be in the null space of P, and if P is nonsingular

the only solution is the trivial one. Also, recall the alternate formulation of the Simon-Ando

evolution equation

xTt = xT0 Pt.

If P is nonsingular then so is any power of P meaning that any formulation of eqrefeq:linsys

with P replaced by Pk will also lead to the zero solution.

We cannot limit our concern to initial probability vectors that go to the uniform

distribution vector in just one iteration. If the uniform distribution vector is reached before

the stochastic clustering algorithm has identified that xTt is in short-term equilibrium

or middle-run evolution, a clustering will not be found. If P is singular, this possibility
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exists, and an alert user may want to check the rank of P whenever the SCA returns

unexpected results.

So the remote possibility exists that an IPV may not yield a solution. In the preparation

of this thesis the stochastic clustering algorithm was run hundreds, if not thousands, of

times and never was a failure due to a pathological IPV, but the thorough user should be

aware of this issue nevertheless.

6.1.2 IPVs leading to different solutions

The fact that cluster analysis is an exploratory tool means that getting different solutions

depending on the initial probability vector is not the end of the road, but rather an

opportunity to examine these solutions in the hope of gaining additional insight into the

data set’s structure.

That said, it would still be instructive to know as much as possible about the

characteristics shared by IPVs that lead to the same solution, how many different solutions

are possible, and how often each of them is likely to appear. Probabilistic analysis of

random starting vectors has been done in the context of iterative methods for finding

eigenvalues and eigenvectors [20, 46], and is a natural area for further research on the

stochastic clustering method.

6.2 Using a single similarity measure

The workload in consensus clustering is concentrated at the beginning of the process

when the large number of clustering results are computed. Even if a user has access to a

multiprocessor environment where this work can be shared, it would be advantageous

to find a single similarity measure which is compatible with the stochastic clustering
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algorithm.

Since the SCA is inspired by Simon-Ando theory, the underlying matrix must be

nearly uncoupled. For a given data set, the problem with most traditional similarity (or

dissimilarity) measures is that their values tend to the middle of their range. To illustrate,

consider two common similarity measures: Euclidean distance and the cosine measure

f(x1,x2) =
xT1 x2

||x1||2 ||x2||2
.

The former has the advantage of being familiar to almost everyone, while the latter has

been found to be quite useful in data clustering, particularly text-mining [9]. However, as

Figure 6.1 shows for the leukemia DNA microarray data set we will cluster in Section

7.2, the distribution of values returned by these two common measures is not the kind

of distribution needed to form a nearly uncoupled matrix. There have been attempts to

“massage” these kinds of distributions so that they contain more values at the extremes.

Such methods often involve changing small values to zero and then performing some

arithmetic operation that gives the remaining data a larger variance (for example, if the

values are in the interval [0, 1], squaring each value) [87]. These methods, however, are

far from subtle and in experiments for use with the SCA, the matrix P went from dense

to too sparse for clustering in one iteration of attempting to adjust its values.

A single measure that has been used with some success involves the idea of nearest

neighbors, those data points closest to a given data point using a specific distance measure.

For each element g in the data set, the set Ng consists of the κ nearest neighbors of g,

where the user chooses both the positive integer κ and the distance measure used. The

sij element of the consensus matrix is equal to the number of elements in Ni ∪Nj [1].

Work with consensus matrices built in this fashion is still in its initial stages. It has
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become obvious that the choice of κ and the distance measure greatly affect the results

as can be seen in Table 6.1.

Table 6.1: Building a consensus matrix based on the number of shared nearest neighbors
can work well or poorly depending on the value of κ, the number of nearest neighbors
calculated for each data point. When κ = 15 the stochastic clustering algorithm detects
five clusters. This fifth cluster only has one member, while the rest of the solution is
correct.

κ Clusters Errors
15 5 1
20 4 0
25 4 18

6.3 Why use the stochastic clustering algorithm?

As we conclude our discussion of some of the concerns we have about the stochastic

clustering algorithm and prepare to share some results on real-world data sets, it may be

time to ask an obvious question: Why should we use this algorithm anyway?

The most compelling reason is that the SCA determines k, the number of clusters.

If the clustering ensemble that creates the consensus matrix uses a variety of k-values,

how does a user decide which to use for the final clustering of the consensus matrix?

And if different clustering methods are used in the ensemble, how do we pick which one

to use for the final clustering? And if the user decides to cluster the consensus matrix

with a number of different algorithms and values of k, what do they do if they are again

presented with a variety of solutions?
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As we saw earlier in this chapter, the stochastic clustering algorithm can return

different clusterings depending on the initial probability vector. The SCA has a natural

solution to dealing with this problem, namely having the user build a new consensus

matrix based on these different clusterings and use it as input for another run of the SCA.

This repetitive approach is currently being tested.

Some might wonder why we do not use the consensus matrix S as input to some

graph partitioning algorithm. A short reply to that would be that although there is much

known about graph partitioning the work in the field is designed to partition graphs,

not cluster data. We cannot assume that just because the structure of the consensus

matrix resembles that of a weighted graph, that a partition of the graph is related to the

underlying data clustering problem.

But what of spectral methods like the Fiedler method [23] which have been shown

to be effective in clustering consensus matrices (see [6] for one example)? The Fiedler

method relies on the Laplacian of the consensus matrix and makes clustering decisions

based on sign pattern analysis of one or more the Laplacian’s eigenvectors. The Fiedler

method can be implemented either as a divide-and-conquer scheme, in which case a poor

early division can never be undone, or as a method that examines multiple eigenvectors

at once and is thus restricted to looking for a number of clusters equal to a power of two

(though some of these may be empty).
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(c) Distribution of Euclidean norm values.

Figure 6.1: Histogram 6.1a shows the distribution of consensus matrix similarity values
between the 38 elements in the leukemia DNA microarray data set that will be introduced
in Section 7.2. The horizontal axis measures the number of times out of 100 that two
elements clustered together. Histogram 6.1b shows the distribution of cosine similarity
measures between the same elements, while Histogram 6.1b does the same for Euclidean
norm values scaled to the interval [0, 1].
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CHAPTER 7

Results

In this chapter we will look at results from using the stochastic clustering algorithm. The

data sets will vary in number of elements and dimension of the data. Good and bad

results will be shared with the hope that examining both will shed some light on the

limitations of the algorithm and suggest areas for future work to improve the algorithm.

In each section we also compare the stochastic clustering algorithm’s results to those

obtained by using a standard clustering algorithm to cluster the columns of the consensus

similarity matrix S.

7.1 The Ruspini data set

This thesis began with an “eyeball” clustering of the Ruspini data set, a seemingly

innocuous collection of 75 points in the plane. We then saw that some widely-used
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Figure 7.1: The k-means algorithm not only incorrectly clusters the Ruspini data set -
but does it in a variety of ways.

clustering algorithms frequently make mistakes clustering this data set. Figure 7.1 shows

four different misclusterings supplied by the k-means algorithm.

In a collection of 1000 clustering results found using MATLAB’s k-means command,

464 did not match the natural “eyeball” clustering of Figure 1.1. In these instances

k-means made between 15 and 26 assignment errors. As further evidence of k-means’

unspectacular performance on this data set, in nine of the 1000 instances, k-means

returned one empty cluster.
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The stochastic clustering algorithm was run using the consensus similarity matrix S

constructed using the results of these 1000 runs of k-means as input, and the result it

returned was perfect.

To see how dependent the stochastic clustering algorithm is on the random initial

probability vector, the SCA was run 1000 times with S as input. Table 7.1 summarizes

the results and compares them to using the k-means algorithm to cluster the columns

of S. The stochastic clustering algorithm performed far better. In fact, k-means did a

better job clustering the original data than it did clustering the consensus matrix.

Table 7.1: The stochastic clustering algorithm performed much better than k-means at
clustering the Ruspini data set using the consensus similarity matrix S as input.

Out of 1000 trials
# of Errors SCA k-means

0 924 279
1-10 0 0
11-20 76 333
21-30 0 285
31-40 0 60
41-50 0 42

7.2 DNA microarray data set

In 1999 a paper was published analyzing a DNA microarray data set containing the gene

expression values for 6817 genes from 38 bone marrow samples [33]. Five years later,

the same 38 samples were examined, though this time only 5000 genes were used [13].

The samples came from leukemia patients who had all been diagnosed with either acute

57



lymphoblastic leukemia (ALL) or acute myeloid leukemia (AML). Additionally, the AML

patients had either the B-cell or T-cell subtype of the disease (ALL-B or ALL-T). This data

set is well known in the academic community (Google Scholar reports that the 1999 paper

has been cited over 6000 times) and is an excellent test for new clustering algorithms since

it can be divided into either two (ALL/AML) or three (ALL-B/ALL-T/AML) clusters.

The actual clustering for the leukemia data set is known (see Table 7.2), though the 2004

paper noted that the data “contains two ALL samples that are consistently misclassified

or classified with low confidence with most methods. There are a number of possible

explanations for this, including incorrect diagnosis of the samples [13].”

Table 7.2: The correct clustering of the leukemia DNA microarray data set.

Diagnosis Patients
ALL-B 1 – 19
ALL-T 20 – 27
AML 28 – 38

Since the 2004 paper was published to demonstrate the effectiveness of nonnegative

matrix factorization in clustering this data set, though results for individual runs varied.

So, this data set seems to be an appropriate test for the stochastic clustering algorithm,

using NMF with different k values to build the ensemble. The data set was clustered

using NMF 100 times each for k = 2 and k = 3. Additionally, to explore the data set

further, the data were clustered an additional 100 times for k = 4, 5 and 6.

Table 7.2a shows the number of errors for each clustering used in building S2, the

k = 2 consensus similarity matrix. NMF is clearly quite good at clustering this data set

into two clusters. When the stochastic clustering algorithm is used to cluster the patients
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based on S2, it mis-clusters Patients 6 and 29. This clustering is extremely reliable, with

the same result from 100 consecutive calls of the SCA.

Similar comparisons were done using S3, the k = 3 consensus similarity matrix, and

again the stochastic clustering method could not improve on the already excellent results

of NMF. NMF made an average of 3.18 errors per clustering compared to 4.76 for the

SCA. Even the hope that the SCA would provide a narrower band of errors than NMF is

not realized (see Table 7.2b). Perhaps the lesson is that if the original method does a

good job of clustering, SCA is not likely to improve on it.

Since cluster analysis is an exploratory tool, consensus matrices S4, S5, and S6 were

constructed to see if either the stochastic clustering algorithm or nonnegative matrix

factorization could discover some hidden structure in the data set that would indicate

one or more undiscovered clusters. If a group of elements all break away from an existing

cluster or clusters, there is reason for further investigation regarding a new cluster.

Interestingly, when k = 4, the results from both NMF and the SCA agree. As Table 7.2c

summarizes, they both have identified a fourth cluster made up of four ALL-B patients

and two AML patients.

Neither of the methods give any indication of further clusters. When k = 5 or k = 6

both methods begin to build two or three large clusters with the remaining clusters

containing only two or three members.

Before we move on to the next data set, there is one other interesting result to report.

If the stochastic clustering algorithm is run using the sum of S2 and S3 it identifies two

clusters and makes only one clustering mistake, namely Patient 29.1

1Throughout the research period for this thesis, the Patient 29 sample was misclustered nearly 100
per cent of the time. One of the authors of the 2004 paper verifies that in their work, the Patient 29
sample was also often placed in the wrong cluster [84].
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# of Errors 1 2 3 4
# of Instances (NMF) 30 65 3 2
# of Instances (SCA) 0 100 0 0

(a) The leukemia DNA microarray data set was clus-
tered 100 times using NMF with k = 2. The number
of errors ranged between one and four. When the
SCA was used on the consensus matrix created from
those 100 NMF clusterings, it mis-clustered Patients
6 and 29 each time.

# of Errors 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# of Instances (NMF) 0 71 3 9 3 3 1 2 0 3 0 1 0 3 1 0
# of Instances (SCA) 0 67 0 0 0 0 0 0 0 27 0 6 0 0 0 0

(b) Neither the SCA nor NMF shows an advantage over the other when clustering the consensus matrix S3.

Diagnosis Patients Patients
ALL-B 1 – 19 1, 3, 5, 7 – 9, 11 – 14, 16 – 18
ALL-T 20 – 27 10, 20 – 27
AML 28 – 38 28, 30 – 35, 37, 38

New Cluster 4, 6, 19, 29, 36

(c) Both NMF and SCA agree that there may be a new cluster. The
third column shows the membership of this new cluster and the patients
remaining in the other three.

Figure 7.2: A collection of tables that compare the results of clustering consensus matrices
constructed using different k-values. The consensus matrices were clustered by both the
SCA and NMF. Table 7.2a compares the results for k = 2. Table 7.2b shows very little
difference between the two methods when k = 3. Table 7.2c shows a possible fourth
cluster suggested by both NMF and SCA.
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7.3 Presidential election data

The last two sections featured data sets with a known “correct” clustering. It is time to

move to a more realistic situation where one might have some intution about the number

of clusters and what elements should be in them, but not a definite answer in mind.

We will consider the state-by-state vote counts in each United States presidential

election from 1980 to 2008 and cluster the states whose voting behaviors are similar

[56]. The data are first stored in a 28× 50 candidate-by-state matrix where entry ij is

the number of votes candidate i received from state j. Note that a person who ran for

president multiple times would have a row for each election. For example Ronald Reagan

(1980) is in row one of this data set, while Ronald Reagan (1984) is in row four. The

28 rows represent the two major party candidates from these eight elections, the four

well-known third party candidates during this period2, and eight rows labeled “Other”

that include votes cast for all other candidates.

Our knowledge of recent electoral history will tell us if the clustering results are

unreasonable. The instances where the results do not fit our a priori opinion should be

instructive in demonstrating the clustering method’s ability to find hidden structure in

the voting records.

The data were first clustered using the three algorithms

1. k-means after normalizing each column to row sum one and using squared Euclidean

distance as the similarity measure,

2. k-means using the cosine measure, and

3. nonnegative matrix factorization.

2John Anderson (1980), H. Ross Perot (1992, 1996), and Ralph Nader (2000)
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Each of the algorithms was run 100 times for each of five k-values (k = 2, 3, 4, 5, 6) for a

total of 15 consensus matrices.

Using the three k = 2 consensus matrices as input to the stochastic clustering algorithm,

gives two different solutions as both k-means’ inputs led to the same clustering. The maps

in Figure 7.3 illustrate the results. The two maps agree on all but four states: Missouri,

New Hampshire, New Mexico, and Ohio.

(a) SCA clustering using k-means input

(b) SCA clustering using NMF input

Figure 7.3: The SCA finds two clusters when working with consensus matrices built using
k = 2, whether the original clustering was done by k-means (7.3a) or NMF (7.3b). There
is agreement on all but four states.
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Examining the maps it is clear that, in general, the green states are associated more

with the Democratic party and the tan states more with the Republican party, and that

the size of the “green” cluster is larger when using k-means consensus matrices. It is

probably not a surprise that if the stochastic clustering algorithm is run on the sum of

the two k-means created consensus matrices that the results are identical to those seen

in Figure 7.3a. So even though combining the two k-means consensus matrices does not

add to the number of green states, if all three consensus matrices are summed and the

resulting matrix used as input to the stochastic clustering algorithm, four more states

(Colorado, Florida, Nevada, and West Virginia) join the “green” cluster.

Figure 7.4: Results from the stochastic clustering of the consensus matrix formed by
adding all three of the k = 2 consensus matrices together.

The results from using the stochastic clustering algorithm with the consensus matrices

created when k = 3, bear out the common view of two separate groups of states in U. S.

politics (i.e. the “red” states and the “blue” states). The third cluster is always small
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(see Figure 7.5b) and often contains only one state, usually Missouri or West Virginia.

When all three consensus matrices are summed, the SCA finds a third cluster with those

two states as its only members (Figure 7.5a). This contrasts with work done examining

presidential election data from 1912 to 2008, where a third cluster of eight to twelve states

was consistently found [14, 62].

This discovery of only small third clusters is taken to its logical conclusion when the

SCA attempts to cluster using the NMF-generated consensus matrix and returns only two

clusters. This is because the gap between λ2(P) and λ3(P) is larger than that between

λ3(P) and λ4(P). However, the difference in the gaps is only .0022. If the SCA is forced

to find a third cluster, it also finds a small one - New Mexico and West Virginia.

(a) SCA clustering using all consensus matrices (b) SCA clustering using k-means input

Figure 7.5: When the SCA works with consensus matrices built using k = 3 the result is
often an empty or very small third cluster. The (7.5b) map shows one of the few sizable
third clusters found.

As the stochastic clustering algorithm is applied to consensus matrices built with

k = 4 or more we see the behavior exhibited at k = 3 continue. Either a small number

of states occupy one or more of the clusters, or the SCA finds fewer clusters than the
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original methods were asked to find. Consensus matrices built using NMF never yield

more than three clusters, and when they are built with k = 6, the SCA finds just one

cluster - all 50 states.

Still there is something to be learned by looking at the clusters found by the stochastic

clustering algorithm as k gets larger. Figure 7.6 displays some representative maps and

highlights the exploratory nature of cluster analysis. As the value of k grows, we can see

small groups of states move into their own clusters. Subtleties that were hidden when

k = 2 now begin to appear - a distinction between southeastern states that border the

Atlantic Ocean and those inland, a difference between northern and southern states in

the Mountain time zone, and New Hampshire’s place as the state most physically isolated

from its political brethren.

7.4 Custom clustering

As we first mentioned in Section 6.1, the fact that the stochastic clustering algorithm uses

a random initial probability vector means that it can arrive at different solutions, and

when clustering the leukemia and presidential election data sets we found this to be so.

While this might be viewed as a weakness of the algorithm, it does give the researcher the

ability to answer a very specific question by creating a specific initial probability vector.

In Section 7.2, we noticed that the SCA did not cluster the leukemia data set consensus

matrix any better than nonnegative matrix factorization. But what if our primary interest

was not in clustering the entire data set, but instead in finding the membership of the

cluster of a particular data point. For example, if you are the physician for Patient number

2 you have limited interest in a global view of the leukemia data set. Indeed, rather than

knowing which of the three clusters Patient 2 belonged to, it would be of greater use to
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you to know a small number of other patients that are most like Patient 2 in the hope

that that knowledge would help you tailor the best treatment plan possible.

To create such a custom clustering, we construct an IPV containing all zeros except

for a 1 in the place corresponding to our data point of interest. We then ask the stochastic

clustering algorithm to find the cluster containing our specific data point. Since we may

be interested in a collection much smaller than that cluster, the stochastic clustering

algorithm can be modified to ask for a small number data points whose xt entries are

closest to our target point.

Here again we find hope in a feature of the SCA that seemed to disappoint us in

Section 7.2. In that section, the clustering of consensus matrices built from methods using

k = 5 and k = 6 seemed to supply new information. In fact, the small clusters found then

are indicative of an especially close relationship between the cluster members.

Incorporating these ideas using the consensus matrix S6 from Section 7.2 and an initial

probability vector of all zeros except for a 1 in the second position gives us the custom

cluster of {2, 4, 6, 15, 19, 29, 36}, a cluster with four other AML-B patients and two AML

patients (although one of them, Patient 29, consistently clusters with the AML-B patients

in our experience). These results are presented in table 7.3 along with the six nearest

neighbors of Patient 2 using Euclidean distance and cosine measure. The SCA’s custom

cluster for Patient 2 features three patients not found in these nearest neighbor sets and

suggests that physicians could learn a great deal by examining these hidden connections

between Patient 2 and Patients 15, 29, and 36.

For another example of how we could use this custom clustering idea on data we

examined in an earlier section, consider a young mathematician moving to the state of

Pennsylvania and wondering about the political climate of that state. In Section 7.3

we created many consensus matrices based on votes cast in each state in the past eight

66



Table 7.3: Custom Cluster for leukemia Patient 2. This table shows the six other patients
most similar to Patient 2. The patients are listed in similarity order, that is the first one
is the one most similar to Patient 2. The cluster returned by the SCA differs by three
patients with both lists derived from two traditional distance measures.

Method Other Patients
SCA 29, 19, 4, 15, 36, 6

2-norm 19, 16, 9, 3, 6, 18
cosine 16, 19, 9, 3, 18, 4

presidential elections. Using a consensus matrix that sums the adjacency matrices from

all three algorithms used when k = 6, the other members of Pennsylvania’s custom cluster

are

California,
Iowa,
Maine,
Michigan,
Minnesota,
New Jersey,
Oregon, and
Wisconsin.

For our final example of custom clustering we will attempt to make movie recommen-

dations after clustering a data set of movies and ratings from the MovieLens recommender

system, a research lab project in the Department of Computer Science and Engineering

at the University of Minnesota [35].

The data set used contains over one million ratings for over 3900 movies made by

6040 users. Before clustering the data, movies that were rated fewer than 20 times were

deleted leaving a total of 3043 movies with 995,492 ratings. The data were then stored

in a 6040× 3043 matrix that was clustered using nonnegative matrix factorization five

times each for k = 11, 12, . . . , 30, and the clustering results used to build a 3043× 3043
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consensus matrix S.

This data set has not appeared yet in this chapter because the stochastic clustering

method is not appropriate for clustering it. The largest gap in the list of ordered

eigenvalues of P, the doubly stochastic form of S, is between 1 = λ1(P) and λ2(P) which

the SCA interprets to mean there is only one cluster. When the SCA is forced to look for

a larger number of clusters, the typical result is a large number of small clusters and one

or two clusters with hundreds or thousands of elements.

But if the SCA finds many small clusters in this data set, it may be quite useful

to use it to find custom clusters for people wanting to see movies that have been rated

similarly to their favorites. Table 7.4 shows the custom clustering algorithm’s suggestions

for three well-known movies. Remember that the algorithm is not saying anything about

the similarity of these movies as entertainment. It is just saying that they are rated

similarly by the same people. That message is especially important to consider when

reading Table 7.5.

Table 7.4: Some Custom Cluster Movie Recommendations

Rebecca Die Hard Forrest Gump
Vertigo Forbidden Planet I.Q.

Rear Window Contact Dave
Sunset Boulevard X-Files That Thing You Do!

Laura Nineteen Eighty-Four My Best Friend’s Wedding
The Thin Man 2010 The Wedding Singer
The Big Sleep Star Trek: Insurrection You’ve Got Mail

Strangers on a Train Planet of the Apes
Shadow of a Doubt Predator

The Lady Eve
The Palm Beach Story

Double Indemnity
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Table 7.5: Huh?

The Princess Bride
Ghost in the Shell (Kokaku kidotai)

The Hunt for Red October
Lethal Weapon

Conquest of the Planet of the Apes
Robocop 2

Quatermass and the Pit
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(a) SCA clustering using k-means input (k = 4) (b) SCA clustering using k-means input (k = 5)

(c) SCA clustering input from all k = 4 methods (d) SCA clustering using all 15 consensus matrices.

Figure 7.6: These maps highlight some of the results from applying the SCA to consensus
matrices built with k-values of four or greater. Maps 7.6a and 7.6b both come from SCA
clustering of k-means created consensus matrices, one using k = 4 and the other using
k = 5. The SCA finds four clusters using both of these inputs, though the clusters are
different. Map 7.6c shows the SCA output from using all of the k = 4 created consensus
matrices. And finally, for 7.6d the SCA was applied to the sum of all 15 consensus
matrices. It determined that k = 2 and results in a map quite similar to the ones we first
saw in Figure 7.3.
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Custom Clustering Algorithm (CCA)

1. Create the consensus similarity matrix S and the doubly stochastic
symmetric matrix P just as in the stochastic clustering algorithm.

2. Construct xT0 to contain all zeros except for a one in the place of the
element we are interested in creating a custom cluster for.

3. Pass the algorithm values for the minimum and maximum size cluster
you desire and the maximum number of iterations the CCA should take
trying to find that cluster.

4. After each xTt = xTt P multiplication, cluster the elements of xTt as in
the SCA. If the cluster containing the target element is within the size
parameters, output the cluster and end the program.

Figure 7.7: The Custom Clustering Algorithm
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CHAPTER 8

Conclusion

8.1 Contributions

• The development and analysis of a new consensus clustering algorithm that does

not require the user to decide on the number of clusters. This is significant because

nearly all popular techniques require the user to either have a priori knowledge of

the number of clusters or to guess at it.

• A new measure, σ(P), is introduced that quantifies how nearly uncoupled a matrix is.

Unlike earlier measures, σ(P) can be applied to both stochastic and non-stochastic

matrices.

• A rigorous proof that when the consensus matrix S is converted to doubly stochastic

form near uncoupledness is not lost.
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• A rigorous proof that if the second eigenvalue of an irreducible, symmetric, doubly

stochastic matrix is close to one, then the matrix has nearly uncoupled form.

• Empirical “proof of concept” results that demonstrate the viability of the new

clustering technique. These results have been shared with the research community

through conference proceedings and research papers [62, 63].

8.2 Future Research

• Use probabilistic analysis of initial probability vectors to see what we can learn

about the number of possible solutions the SCA can return and whether there is any

connection between σ(P, n1) and the tendency of P to produce multiple solutions.

• Investigate whether in situations where the stochastic clustering algorithm returns

multiple answers, if building a consensus matrix from these results, and applying

the SCA again will eventually yield a unique solution.

• Examine whether the Sinkhorn-Knopp balancing step can be replaced by a simple

scaling to make all row sums equal. Though we lose the results from Markov chain

theory, perhaps they are unneeded since all we are looking for is xTt values that are

approximately equal.

• Continue the search for a single similarity measure whose values are distributed in

a way that can be exploited by the stochastic clustering method.

• Improve the bounds for values of di. Numerical results indicate that the upper

bound found for Theorem 3.13 can be greatly improved.
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• Explore the structure of the spectrum of symmetric, irreducible, nearly uncoupled,

doubly stochastic matrices. For this thesis, we were only concerned with the

eigenvalues near one, but from examining eigenvalues during the course of this

research, there appears to be some structure to the spectrum, especially a large

number of eigenvalues near zero.

• Work to find some bounds on the numeric connection between λ2(P) and σ(P, n1)

that Theorems 4.4 and 4.5 establish.

• Establish a precise definition for the Perron cluster and use it to rigorously extend

Theorem 4.5 to all the eigenvalues in the Perron cluster.
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APPENDIX A

MATLAB code

A.1 Stochastic Clustering Algorithm

function [C t k x] = sca(S,ds,num,maxevals,ipv,repclusters,maxits)

%

% sca - Stochastic Clustering Algorithm

%

% INPUT

% S - an n x n similarity matrix

% ds - A flag telling whether S has already been coverted to doubly

% stochastic form. 0=no, 1=yes. If the user is using the same

% consensus matrix repeatedly, it is advantageous to use the

% Sinkhorn-Knopp algorithm just once outside of this program.

% num - the number of clusters. The user can specify a specific number.

% num=0 lets the sca choose the number of clusters by examining the

% Perron cluster.

% maxevals - the number of largest eigenvalues of P that are computed. For

% a large problem the user might want to request less than all

82



% of the eigenvalues to improve performance. maxevals=0 computes

% all the eigenvalues.

% ipv - a user specified initial probability vector. ipv=0 means a random

% ipv will be used.

% repclusters - the sca will stop when the same clustering is found for

% this number of consecutive iterations.

% maxits - the maximum number of iterations the user wants the sca to run.

%

% OUTPUT

% C - an index with the cluster number for each data point.

% t - the number of iterations the sca ran.

% k - the number of clusters found.

% x - all the probability vectors used during the run of the sca.

% x(1,:) is the ipv. This can use a lot of memory, so don’t request it

% unless you have a need to study each probability vector.

%

% Author: Chuck Wessell

% Last Updated: May 15, 2011

%

[m,n] = size(S);

if m ~= n

fprintf(’\nWarning: Input matrix S is not square.\n’);

return

end

%

% If S isn’t already doubly stochastic, apply the Sinkhorn-Knopp algorithm

% for symmetric, fully indecomposable matrices. Then the matrix P is

% checked for symmetry.

%

if ds == 0

[P] = skd(S);

else

P = S;

end

%

issym = max(max(abs(P-P’)))<=1e-16;

if ~issym

fprintf(’\nWarning: Matrix P is not symmetric.\n’);

return

end

%
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% Look at the eigenvalues of P. Although all the eigenvalues should be

% real, MATLAB’s eig command occasionally has a +/- .0001i tacked onto an

% eigenvalue. The workaround is to sort only the real parts of the

% eigenvalues.

%

if maxevals == 0

lambdas = sort(real(eig(P)),’descend’);

else

lambdas = sort(real(eigs(P,maxevals)),’descend’);

end

%

% If the parameter num is non-zero, the user wishes to choose the number of

% clusters. If num = 0 the user will let the algorithm decide on the number

% of clusters. To do this, the eigenvalues of P are sorted and the largest

% gap in the sorted list found. This gap divides the eigenvalues into two

% groups. The number of eigenvalues in the group containing 1 is the number

% of clusters.

%

if num == 0

k = 1;

maxgap = 0;

for i=2:length(lambdas)

if abs(lambdas(i)-lambdas(i-1)) > maxgap

maxgap = abs(lambdas(i)-lambdas(i-1));

k = i-1;

end

end

else

k = num;

end

%

% The storage for all the probability vectors and the clustering index is

% created.

%

x = zeros(10,n);

C=ones(n,1);

%

% The clustering loop is entered, and the ipv is either randomly generated

% or set to the user supplied one. Then until a clustering is found or

% maxits reached, the inner while loop calculates a new probability vector,

% find the k-1 largest gaps in it and clusters the probabilities on each
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% side of the gaps. If the clusterings agree for repclusters consecutive

% iterations, clustering is complete.

%

clustered = 0;

while ~clustered

if ipv == 0

x(1,:) = rand(1,n);

x(1,:) = x(1,:)/sum(x(1,:));

else

x(1,:) = ipv;

end

t = 1;

done = 0;

count = 0;

while ~done && t <= maxits

x(t+1,:) = x(t,:)*P;

oldC = C;

C=ones(n,1);

[b,idx] = sort(x(t+1,:),’ascend’);

for i=1:length(b)-1

delta(i)=b(i+1)-b(i);

end

[bd,idxd] = sort(delta,’descend’);

for i=2:k

match = C(idxd(i-1)+1);

target = idxd(i-1)+1;

while (target <= n) && (C(target) == match)

C(target)=i;

target = target + 1;

end

end

Chat=sortrows([idx’ C],1);

C=Chat(:,2);

if oldC == C

count = count + 1;

if count == repclusters

done = 1;

end

end

t = t+1;

end
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clustered = 1;

end
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A.2 Matrix Scaling

function [P,d] = skd(A)

%

% skd - Sinkhorn-Knopp algorithm for matrices that can be made doubly

% stochastic by left and right multiplication by the same diagonal matrix.

% Function skd converts square matrix A to doubly stochastic from by

% forming the product DAD, where D is a diagonal matrix with positive main

% diagonal entries. The function computes the two diagonal matrices

% typically found by the Sinkhorn-Knopp algorithm and then scales one of

% them to arrive at D.

%

% INPUT

% A - an n x n similarity matrix. In order for this single D approach to be

% appropriate, the input matrix A must be symmetric, fully indecomposable,

% nonnegative and have a positive main diagonal. This will always be the

% case if this function is used in conjunction with the Stochastic

% Clustering Algorithm, but some error checking is done anyway.

%

% OUTPUT

% P - the n x n doubly stochastic matrix converted from A.

% d - the diagonal elements of the matrix D.

%

% Author: Chuck Wessell

% Last Updated: May 15, 2011

%

[m,n]=size(A);

%

if m ~= n

error(’Matrix must be square.’);

return;

end

%

if min(A(:)) < 0

error(’Matrix must be nonnegative.’);

return;

end

%

if sum(diag(A) > 0) < m

error(’Matrix must have a positive diagonal.’);

return;
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end

%

% It is possible to compute the diagonal of D using the single MATLAB

% command x = 1./(A*x); instead of the two statements labeled (1) and (2)

% below. However, alternate iterations of x converge to the same limits

% that c and r do, so this code uses the more intuitive c and r. The loop

% is continued until consecutive iterates of both c and r differ by less

% than 1e-12.

%

iter = 1;

diff = 1; %to force first iteration

tol = 1.0e-12;

c = ones(m,1);

r = ones(m,1);

while (diff > tol)

oldc = c;

oldr = r;

c = 1./(A’*r); % (1)

r = 1./(A*c); % (2)

iter = iter + 1;

diff = max(norm(c-oldc,2),norm(r-oldr,2));

end

%

alpha = c(1)/r(1);

d = sqrt(alpha) * r;

P = diag(d) * A * diag(d);

%

end
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A.3 Custom clustering algorithm

function customcluster(S,ds,ipv,maxits,lb,ub,names)

%

% customcluster - attempts to find a cluster within a given size range that

% includes a given element of the data set. customcluster uses the

% Stochastic Clustering Algorithm to cluster the data.

%

% INPUT

% S - an n x n similarity matrix

% ds - A flag telling whether S has already been coverted to doubly

% stochastic form. 0=no, 1=yes. If the user is using the same

% consensus matrix repeatedly, it is advantageous to use the

% Sinkhorn-Knopp algorithm just once outside of this program.

% ipv - a user specified 1 x n initial probability vector containing all

% zeros except for a 1 in place representing the data point the user

% wishes to cluster around.

% maxits - the maximum number of iterations the user wants customcluster to

% search.

% lb - a user-defined lower bound on the size of the cluster (includes the

% target data point and lb-1 others).

% ub - a user-defined upper bound on the size of the cluster (includes the

% target data point and ub-1 others).

% names - a list of the names associated with the data points. An array of

% integers can be used if the data have no names.

%

% OUTPUT

% The cluster elements are printed to the screen.

%

% Author: Chuck Wessell

% Last Updated: May 15, 2011

%

[m,n] = size(S);

if m ~= n

fprintf(’\nWarning: Input matrix S is not square.\n’);

return

end

%

% If S isn’t already doubly stochastic, apply the Sinkhorn-Knopp algorithm

% for symmetric, fully indecomposable matrices. Then the matrix P is

% checked for symmetry.
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%

if ds == 0

[P] = skd(S);

else

P = S;

end

issym = max(max(abs(P-P’)))<=1e-16;

if ~issym

fprintf(’\nWarning: Matrix P is not symmetric.\n’);

return

end

%

% The number of clusters is rather arbitratily set to the square root of

% the number of data points. The item of interest (ioi) is identified from

% the ipv and the cluster index C initialized. Then until maxits is reached

% or a suitably sized cluster is found, x=x*P is repeated and the resulting

% vector clustered. Once an appropriate sized cluster is found, the names

% of the cluster members are displayed on the screen.

%

k=floor(sqrt(m));

ioi = find(ipv==1);

x = ipv;

C=ones(n,1);

%

for reps=1:maxits

x = x*P;

C = ones(n,1);

[b,idx] = sort(x,’ascend’);

for i=1:length(b)-1

delta(i)=b(i+1)-b(i);

end

[bd,idxd] = sort(delta,’descend’);

for i=2:k

match = C(idxd(i-1)+1);

target = idxd(i-1)+1;

while (target <= n) && (C(target) == match)

C(target)=i;

target = target + 1;

end

end

Chat=sortrows([idx’ C],1);
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C=Chat(:,2);

if (lb <= length(find(C==C(ioi)))) && (length(find(C==C(ioi))) <= ub)

names(C==C(ioi),:)

return

end

end
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